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AbsbacL A random-tiling model with octagonal symmetry is presented. The tiles are the 
square and various hexagons. When each vertex of the tiling is decorated by a disc, a valid 
disc packing is formed, which is an octagonal disc packing of maximum density under certain 
constraints. A simple inflation mle is given that produces one member of the random-tiling 
ensemble. The space group of this tiling is non-symrphic.  The projetion description of 
this tiling involves a fractal acceptance domain with fourfold symmetry for the even nodes of a 
four-dimensional cubic lattice and the same acceptance domain rotated by a14 in perpendicular 
space for the odd nodes. Other tilings can be generated by an inEation rule with constrained 
randomness. Additional members of the random-tiling ensemble can be created from inflation- 
generaled tilings by a set of update moves that m g e  the positions of the discs along closed 
loops. An npdate move does not always consewe the number of each kind of tile. 

1. Introduction 

Tiling models have long been studied in the field of statistical mechanics. Renewed interest 
was generated by the discovery of tilings with quasicrystalline symmetry and the later 
observation of such symmetries in real materials. The origin of the quasicrystalline phase 
remains unclear. One hypothesis is that such phases are stabilized by entropy [1,2]. In 
a random-tiling model of a quasicrystal, the positions of the atoms are described as the 
decoration of a set of tiles that fill space in a number of different ways without gaps or 
overlap. The ‘random-tiling hypothesis’ states, in part, that the entropy of certain ensembles 
of tilings is maximized when the proportions of the various tiles in the tiling and their 
orientations are those associated with quasicrystalline symmetry 121. 

Some basic features are common to most quasicrystaltine tilings. The edges of the 
tiles are in a discrete set of directions which is invariant under a non-crystalline point 
group. These directions, and thus the separation of any two nodes in the tiling, can be 
represented by an integral linear combination of a set of D vectors, where D is greater 
then the dimension d of the tiling space. This set of vectors can be associated with basis 
vectors for a D-dimensional lattice. Each node of the tiling corresponds with a node of the 
D-dimensional lattice and the tiles themselves are d-dimensional faces of the D lattice. The 
tiling is a projection of a continuous d-surface in R D .  There is a special mean orientation 
of the surface associated with quasicrystalline symmetry. Other mean orientations change 
the proportions of the various tiles in R d .  In the random-tiling hypothesis, the quasicrystal 
is entropically stable relative to such nonquasicrystalline phases. 

In studying random tilings, it is useful to determine a set of rearrangements of the tiles, 
or ‘update moves’, that are necessary and sufficient to yield all members of the ensemblet 

t A set of update moves which allows one to reach all members of the ensemble except for a subset of zem 
measure will also be considered an ergodic set 
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from any given member; that is, an ‘ergodic’ set of update moves. The update moves 
provide both a model for the kinetics of phason fluctuations in the quasicrystal and a tool 
that can be used in random-tiling calculations. For these reasons, it is useful to find an 
ergodic set of update moves that involve the minimal number of tiles. 

One class of random-tiling models consists of tilings whose tiles are all parallelograms 
@arallelepipeds, etc). For such tilings, there exists a simple set of ‘flip update moves’, 
which is ergodic [2,3]. In this class of tiIings, the random-tiling hypothesis has been 
verified for the two-dimensional [4,5] and three-dimensional [3,6,7] Penrose tilings, the 
decagonal binary tiling [4,81 and the octagonal tiling consisting of squares and rhombi [9]. 

To obtain a simple random-tiling model for a system of real atoms, however, some 
additional features are desired, as follows: (i) each kind of tile should have a unique atomic 
decoration; (ii) each member of the random-tiling ensemble should be a good packing, 
(i.e. there should be no unphysically close pairs of atoms); (iii) each arrangement of atoms 
that forms a good packing should belong to the ensemble [IO]. A random-tiling model that 
satisfies these constraints will be termed a ‘physical’ or ‘atomistic’ random-tiling model. Of 
the above models, only the decagonal binary tiling model has a known decoration that yield a 
physical model. It is somewhat complicated, however, in that it has two atomic components. 
The discovery of the dodecagonal square-triangle tiling was thus of great interest, since, 
when each node is decorated by an atom, it provides a physical quasicrystalline random- 
tiling model that has only one component. 

The square-triangle tiling has been studied by many authors [11-16]. There is no flip 
update move for such tilings; on the other hand, a set of update moves has been found 
which rearrange the nodes, and thus the tiles, along closed chains o f  various lengths [ll]. 
It has been proven that the complete set of such update moves is ergodic and that a finite 
subset of the moves is insufficient for ergodicity [16]. The random-tiling hypothesis has 
been proven for the square-triangle random-tiling system [lo, 13,141. 

Another physical random-tiling system has been proposed to model quasicrystals with 
icosahedral symmetry. This ‘canonical cells model’ is based on decorating the vertices of 
four distinct tiles with Mackay clusters of atoms [211. The clusters play the role of atoms in 
the above list of desired physical conditions. In close similarity to the square-triangle tiling, 
the tiles are not all parallelepipeds and no flip update move is possible [ 1 I]. Studies of 
large periodic approximants hint that infinite canonical cell tilings exist [18,19]; however, 
no deterministic rule for generating an infinite icosahedral canonical-cell tiling is yet known. 

Thus, to begin further exploration into the generality of the random-tiling hypothesis 
and to perhaps shed some light on the nature of the infinite icosahedral canonical-cell 
tiling, this paper introduces a physical random-tiling model with octagonal symmetry. 
The tiles involved are squares and various hexagons; a tiling composed of these 
tiles might thus be termed a ‘squarehexagon tiling’ in analogy with the terminology 
‘square-triangle tiling’. In section 2, a squarehexagon tiling that has a particularly 
simple inflation rule is presented and the corresponding acceptance domains for the 
projection description of this tiling are found. It is shown that the space group is non- 
symmorphic. In section 3, the inflation rule found in section 2 is generalized to a 
inflation rule that is random, subject to geomehic constraints. In section 4, a set of 
update moves that can be used to generate other members of the tiling ensemble is 
presented. Section 5 discusses several aspects of the tiling, including a proof that these 
tilings solve a particular octagonal disc-packing problem. Finally, section 6 summarizes the 
results. 

In this work, various tilings and ensembles of tilings of squares and hexagons are de- 
scribed. The generic term ‘square-hexagon random-tiling system’ refers to the maximally 
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random system of infinite tilings of squares and hexagons with zero average phason strain. 
The maximally random squarehexagon tiling ensemble will also be referred to as the R 
(for random) ensemble. All other tilings and ensembles described here are subsets of the 
R-ensemble or its approximants and will be named when introduced. A single tiling that 
belongs to an X-ensemble will be called an X-tiling. 

2. A deterministic square-hexagon tiling 

Consider tilings whose edges are all of unit length in a l i i t ed  set of directions (*e!] 
compatible with octagonal symmetry: 

e! = (cos(Ziri/g), sin(2zi/8)) (1) 

with 0 < i < 3. Such tilings are conventionally described in four dimensions via 
a cubic lattice. A continuous surface of 2-parallelograms in R‘ projects to a tiling 
consisting of squares and 45” rhombi. Subsequently in this work, the word ‘rhombus’ 
will refer only to a 45” rhombus. A simple decoration of the nodes of the square- 
rhombus tiling with discs of radius ; is not physical, however, since the short diagonal 
of the rhombus is less than unit length. To obtain a physical random-tiling model (such as 
might correspond with the packing of atoms in alloys with observed octagonal symmetry 
[20]), it is necessary to either (i) use a more complicated decoration of the tiles or 
(ii) choose a different set of tiles that contains no internal diagonals shorter than unit 
l en ,~ .  Here choice (ii) is followed. The new tiles are shown in figure 1. There is, 
in fact, an infinite set of tiles. The tiles will be named the ‘square’, the ‘1-hexagon’, 
the ‘2-hexagon’, etc. The term ‘hexagon’, unless otherwise specified, refers to any m- 
hexagon, m > 1. An m-hexagon is a hexagon with two opposite edges of length m. 
Each edge of length m, m > 1, contains m - 1 additional vertices that divide it into 
segments of length one; thus, strictly speaking, an m-hexagon is a (2m -k 4)-gon. The 
second-nearest neighbour distance in a tiling composed of squares and m-hexagons is 
A. 

Figure 1. First three tiles of the sen- of tiles for 
squmAexagon tilings: (a) square. (b) 1-hexagon and 
(c) 2-hexagon. 

An inflation rule that yields a s uarehexagon tiling is given in figure 2. The linear 
expansion in the inflation is 1 + 2 4. The nodes of a tiling before inflation, [d), 
correspond to what is termed here the ‘principal nodes’ of the inflated tiding, ( 4 n I I ) .  By 
applying the inflation rule to an original tiling that is a centred square, a series of square 
periodic approximants are generated. In the limit of the infinite approximant, the tiling 
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Figure Z Inflation rule for the tiles hat  leads to the squarehexagon B-tiling 

will be octagonal and will be indistinguishable from itself under inflation symmetry. The 
octagonal tiling that is self-similar under this inflation rule is termed here the B (for bipartite) 
tiling. 

In effecting the inflation, the nodes of the tiling, (d), are divided into sets of even 

described below is even or odd. The nearest-neighbour vectors are divided into an even 
subset {e?,,,] (he!) U (&e:). For nodes of 
even parity, the corresponding node in the inflated tiling, + T I [ ,  has four nearest neighbours 
in the directions {e?,,); for nodes of odd parity, the corresponding node in the inflated 
tiling has four nearest neighbours in the directions (eL) .  When this rule is applied to all 
the nodes of a tile, there is always a unique way to fill out the rest of the interior of the 
tile in a way that produces only squares and hexagons. The two possible inflations for 
each tile are shown in figure 2 and correspond to the two possible sets of parities for the 
vertices. 

The B-tiling contains only squares, 1-hexagons and 2-hexagons. When parity and 
orientation are considered, there are 20 distinct tiles. The inflation matrix can be written by 
inspection. The dominant eigenvalue of this matrix is +’, as expected, and the corresponding 
eigenvector gives the ratio of squares, 1-hexagons and 2-hexagons in the B-tiling. This ratio 
is 

and odd parity, {?-em) II and (&,I, according to whether 2.1 in the projection method as 

(&e$ U (-+e$ and an odd subset (e!,) 

ns : n ( l H )  : n ( Z H )  = 2 + ~ 6 1 2  : 3&2 : 1 . (2) 

Each orientation of the tiles is equally likely, proving that the symmetry is octagonal. One 
finds additionally that the 90’ vertices of 2-hexagons in the B-tiling are always of even parity 
if the adjacent edges are among the directions [e?,,) and of odd parity otherwise. A square 
periodic approximant of the B-tiling with edge length 4543 is shown in figure 3. Defining 
‘local environment’ to signify the bonds around a given node (and not the tiles), there are 
only three different local environments in the B-tiling. The statistics of these environments 
are given in table 1. The notation used to describe local environments is similar to that 
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Table 1. Local environments in the square-hexagon tiling. 

6111 

V e e x  type Frequency 

F2 (0,1716) 
(332) 2&' - d-' - #-' (0.6274) 
(422) 6-2 + 0-4 (0.2010) 

Figure 3. Square periodic approximant of the squarehexagon 8-tiling. ?be edge length of the 
periodic cell is J73. 

used by Henley [17]. For example, (422) refers to a node that has three nearest neighbours 
in directions such that the angles between the bonds to successive neighbours are 4 f ,  25 ,  
and 2;. 

This tiling can equally well be described by the projection method [22-24]. Associated 
with each basis vector ei of the four-dimensional lattice is its perpendicular-space, or 
perpendicular-space component e' which is orthogonal to physical, or parallel, space and 
which satisfies e: = ei - e!. Here the perpendicular space Cartesian representation 

e' = (cos(loni/8), sin(lOxi/8)) (3 ) 

is used. Taking the origin of the 4D lattice to be P,, the node xi niej + T,  of the lattice is 
projected as a vertex in the tiling at Ci ni.1 + r! if and only if Ci niei  + r,' E A; the 
region A being termed the acceptance domrun for the tiling. 

To find the acceptance domain for the B-tiling. it is useful to reformulate the idation 
rule for the tiles as an inflation rule for the nodes. Perhaps the simplest such rule is to (i) 
place around each principal node 12 neighbours as follows: four neighbours at distance 1 
in directions consistent with the parity of the node and eight neighbours at distance # in 
the directions &(e!), and (ii) to then eliminate all nodes that are at unit distance from some 
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principal node but in a direction that violates the parity rule for the nearest neighbours of 
that node. The node inflation rule is thus 

(T!venuTb(dd) --f [ ( [ @ . ! ~ ~ o ] ~ ( @ . ~ d + ~ 6 d d } ~ { @ ~ b l d d ~ @ ~ ~ ' } )  

The nodes in the inflated tiling are grouped into even and odd nodes in (4). The action 
of infiation on even and odd nodes is different; thus, in translating the inflation rule into 
perpendicular space, separate acceptance domains, A,, and Aodd are generated for even 
and odd nodes. Using the definitions (&ek)U(+e;f) and {e:dd) = (&ef)U(?ce$), 
and noting that the inflation process multiples distances in perpendicular space by -I/@, 
the perpendicular-space action of the inflation rule can be immediately written from (4), 

The B-tiling acceptance domains can be found as the limit of infinite application of (5 )  
to appropriate initial acceptance domains. A starting acceptance domain that is a simple 
octagon of maximum perpendicular-space radius one is chosen for both A,,,. and A d .  
The corresponding tiling contains octagons and flattened octagons in addition to squares 
and hexagons [Z]. These tiles do not belong to the squarehexagon set; thus it is necessary 
to investigate the behaviour of these tiles under the vertex inflation rule (4). It turns out that 
for every octagon (concave octagon) in a tiling, there is one octagon (concave octagon) in the 
inflated tiling. Thus, the density of bad tiles is zero in the final tiling, and the final acceptance 
domain is that for a self-similar square4exagon tiling, the B-tiling. The fourth iteration of 
the inflation rule applied to the starting octagonal acceptance domains is shown in figure 4. 
It is clear that the B-tiling acceptance domains are fractal. Fractal acceptance domains have 
been seen for pentagonal [26], squar&angle [27,28], and octagonal square-rhombus [29] 
tilings and it has been shown that a generic inflation rule will lead to an acceptance domain 
which is fractal [30]. The HausdorlT dimension of the boundary of the present acceptance 
domain is 

This dimension is between the fractal dimensions calculated by Godrkcbe et al for two 
different octagonal square-rhombus tilings that have fractal acceptance domains [29]. 



Atomistic octagonal random-tiling model 6113 

(a) 

Figure 4. Acceptance domains for (a) even nodes and (b )  odd nodes of the squarehexagon 
B-tiling. 

The space group for the B-tiling is p8gm [31], the non-symmorphic octagonal space 
group with point group 8 mm. This space group was described in detail by Janssen [32]. 
The atomic surfaces corresponding to the acceptance domains A,,,, and Aadd occupy the 
two Wyckoff positions of tetragonal symmetry. The square-rhombus tilings of Godrkche et 
a1 [29] that have fractal acceptance domains also belong to space group p8gm. 

3. Random inflation 

The inflation rule presented in section 2 for the squarehexagon tiling is very similar to 
the inflation rule found by Stampfli for the square-triangle tiling [33]. The set of twelve 
nearest-neighbour directions in the squaretriangle tiling can be divided into two sets, each 
of hexagonal coordination. The principal nodes in the inflated tiling have their nearest 
neighbours along one of these sets of six directions. In the maximally random Stampfli 
inflation, there is complete freedom to choose the orientations of the near-neighbour sets. 
The rest of the nodes in the inflated tiling are forced, and are independent of the orientations 
of the near-neighbour sets. 

The rule presented in section 2 for square-hexagon inflation used a strict choice for 
the directions of the nearest neighbours of principal nodes. However, there is a degree of 
freedom in the choice of directions of these neighbours. The freedom is not total, as it 
is for the squaretriangle tiling. There is a restriction: two principal nodes separated by 
distance @ in one of the directions {e!ve,] cannot both have their nearest neighbours 
in the directions [e!ven] ([e!dd]), because, otherwise, there would be a pair of nodes in the 
inflated tiling separated by @ - 2 c 1. This restriction is illushated in figure 5. As long as 
the choice of near-neighbour sets for all the principal nodes leads to no violations of the 
restriction, it is possible to add additional nodes that create a squarehexagon tiling. At a 
given inflation step, in fact, the additional nodes needed to form a squarehexagon tiling 
are forced and are independent of the orientations of the near-neighbour sets, as in random 
Stampfli inflation. 

The entropy due to this random inflation is not known. An upper bound can be 
determined by the same method that Oxbonow and Henley used to determine the entropy 
of dodecagonal squaretriangle tilings formed by random inflation [lo]. In brief, each 
square-hexagon tiling produced by random inflation or ‘I-tiling’ is the result of an infinite 
sequence of inflation steps. The ancestor tiling j inflation steps before an I-tiling contains 
a fraction q5-2j of the nodes of the I-tiling, and the inflation rule, as described above, gives 
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Figure 5. Constraint on random inhtion rule for square-hexagon I-tilings, An umsnicted 
idation rule leads to four choices (o)-(d) for the nw-neighbour see  of two principal nodes 
sepmed by #. Choice (d), however, does not lead to a valid square-hexagon t i l ing.  

a maximum of two ways to inflate about each of these nodes. Thus, for N nodes in the end 
tiling, there are at most 

distinct tilings formed by inflation. Taking the log and dividing by N gives an upper bound 
for the entropy per node, s:, of the ensemble of inflation-generated tilings (I-ensemble): 

A crude estimate of the actual entropy can be made by counting all of the distinct tilings 
generated by random inflation for a finite approximant. For a square periodic approximant 
of edge length A@*, random inflation generates 181 arrangements of the 58 nodes, yielding 

sf(approximant) = - ln("') FZ 0.0896. 
58 

Even if the error due to finite-size effects is 40%. the entropy per node of the square- 
hexagon I-ensemble is larger than that for the corresponding ensemble of square-triangle 
tilings [34]. 

4. The update move 

The [-ensemble described in section 3 is only a subset of the full ensemble of octagonal 
square-hexagon tilings (the R-ensemble). To obtain additional members of the ensemble, 
one can apply an update move which rearranges the nodes, and thus changes the tiles, along 
a closed chain. By analogy with the update move for the square-triangle tiling, which 
similarly rearranges nodes and tiles along a closed chain, an update move of this kind will 
be termed a 'zipper update move' or 'zipper move'. As in the square-triangle tiling, there 
is a set of zipper moves of various lengths. 
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Figure 6. A zipper updare move for the square-hexagon tiling. 
n e  zipper move shown continues until the ripper returns to 
the original node. 

Figure 7. (a) Smallest region whose interior can 
be r e m g e d  by a ripper move. (b) A zipper move 
can change the absolute numbers of each hnd of 
tile. 

The details of a zipper update move are shown in figure 6. It is necessary to begin 
with a 135" vertex of a hexagon. 'Avo rhombi that share the adjacent 90" degree vertex of 
the hexagon are drawn. The original node is erased from the structure and the new node 
produced by the rhombus is added. One of the rhombi shares with the origin hexagon the 
135" vertex opposite the original vertex. This vertex must be a 135" vertex of a second 
hexagon. This vertex is deleted from the structure and a new vertex is added inside the 
second hexagon as before. Then the process is repeated for the 135" vertex of a third 
hexagon and so forth until the chain returns to the original vertex. Note that the zipper 
move exactly fits the definition of a zipper move given in [IO]--a pair of defect tiles are 
formed (in this case, two rhombi), the defects propagate, as shown in figure 6, until they 
meet and annihilate, completing the zipper move. 

The shortest zipper moves operate on a closed chain of four nodes. In effect, four 
nodes are removed and four new nodes added. One example of such a short move is the 
fundamental 'repackable volume' of the octagonal tiling studied in [25] and is shown in 
figure 7(a). It is equally possible, however, to have a minimum-length zipper move, such as 
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that shown in figure 7(b), which changes the tiles inside a region with a different boundary. 
The zipper move in figure 7(b)  illustrates two other aspects of the zipper move for the 
square-hexagon tiling: (i) The number of each kind of tile is not necessarily conserved and 
(ii) 3-hexagons, etc can be introduced into a tiling where such tiles did not previously exist. 

In the square-triangle tiling system, the defects in the zipper move sometimes have 
choices where they can proceed. In the square-hexagon system, it can be easily proven that 
the defect tile never has any choices where to proceed. While this lack of M o m  makes 
the square-hexagon zipper moves easy to implement, it raises questions about whether the 
set of zipper moves is sufficient for ergodicity. 

It is unknown whether the set of zipper update moves is sufficient for ergodicity and, if 
so, whether it is necessary to include zippers of arbitrary length for ergodicity (as is the case 
for the squaretriangle tiling). The question of zipper length has physical implications-as 
discussed in the introduction and in [IO], one might consider a zipper move to correspond to 
an actual physical rearrangement of atoms. As described above, a zipper move is equivalent 
to the formation of a defect pair, which propagates until it rejoins itself and annihilates. 
Although such a defect might have only a small positive energy relative to the tiling ground 
states, it remains unknown whether the propagation of such defects over arbitrarily long 
distances is a plausible physical process. 

5. Discussion 

In [25], the question was asked: for an octagonal disc packing with nearest-neighbour 
vectors of the form (I), what is the maximum density that can be achieved? 

Here, this question is answered, under the additional restriction that the l i e s  connecting 
near neighbours form tiles which can be subdivided into squares and rhombi without holes 
or overlap. The area of any such tile is in the form 

A = j A s  + kAR (10) 

where As = 1 is the area of the square, A R  = 4512 is the area of the rhombus and j and k 
are both integers. In the octagonal square-rhombus tiling, the number of nodes equals the 
number of tiles. For a tile that can be subdivided into squares and rhombi, however, the 
number of nodes for a tile is in general fewer than j + k ,  due to ‘internal’ vertices of the 
tile. Each rhombus inside a tile forces at least one ‘internal‘ vertex. The number of internal 
vertices per rhombus can be minimized if each internal vertex is shared by two rhombi; 
thus, in principle, the maximum number of nodes per tile, Nma. satisfies 

There exists an infinite number of tiles that meet this maximum density. This set consists of 
the square, and the series of ‘hexagons’ described in section 2. With the square considered 
as a 0-hexagon, the area of the m-hexagon, A ( m ~ )  is given by 

A(,,,H) = AS + 2 m A ~  (12) 

and the number of nodes contained is 
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All other tiles whose interiors can be filled with squares and rhombi have fewer nodes than 
given by ( I  1); thus a tiling consisting of squares and hexagons must have the maximum 
density for an octagonal tiling of such tilest. 

In the square rhombus tiling, for octagonal symmetry, the ratio of squares to rhombi 
must be [35] 

According to (Z), (12) and (13), the density of nodes in the square-hexagon tiling is 
(2 + &.)/4. The packing fraction with a disc placed on each node is approximately 
0.6704. The absolute concentrations of each tile in the squarshexagon tiling are not fix+ 
by symmetry. Equation (14) only leads to the constraint that, for an octagonal tiling of 
m-hexagons (the square considered as a 0-hexagon), 

Note that (2) satisfies (15). 
In [U], the octagonal disc-packing problem was studied entirely within the context 

of perpendicular space as the problem of maximizing the area of the acceptance domain 
subject to certain perpendicular-space constraint vectors. It was shown that by replacing 
certain regions around the vertices of the unit octagonal acceptance domain by half-filled 
regions, i.e. performing the ‘pinwheel construction’ [36], a denser packing of discs of radius 
4 could be obtained at the cost of having a non-connected acceptance domain. The tiling 
in the present work is obtained by relaxing the restriction in the previous work that the 
acceptance domain be identical for each four-dimensional lattice point. By dividing the 
4D lattice into even and odd sublattices, the problem is greatly simplified: it becomes 
possible to completely fill the ‘pinwheel regions’ about half of the vertices of the unit 
octagon and to completely delete these regions about the other half. The steps in obtaining 
the fractal in figure 4 are akin to the ‘iterated pinwheel conshuction’; the use of difference 
acceptance domains for even and for odd nodes eliminates the effects of the constraint vector 
of perpendicular-space length 1 + f i  that is the limiting factor for the pinwheel construction 
when a single acceptance domain is used [U]. It is possible that, for the related problem 
of finding the densest icosahedral b-c packing (associated with the problem of finding 
deterministic canonical-cell tihgs), the use of a superstructure of the higher-dimensional 
lattice might also greatly simplify the problem. 

There are a number of unanswered questions concerning the random-tiling ensemble. 
Perhaps the most interesting unsolved problems concern the symmetry of the R-ensemble 
presented here and related systems. The B-tiling is bipartite; is the R-ensemble as a whole 
bipartite, or do the even and odd nodes become indistinguishable? 

Additionally, it has been shown [37] that the subset of the R-ensemble consisting of 
tilings containing only squares and 1-hexagons (the R1-ensemble) form a random-tiling 
system with finite entropy density; however, there is no known R1-tiling with symmetry 
8 nun. If it is impossible to form an RI-tiling at zero phason strain that has full octagonal 
symmetry, then is there any reason for the entropy density of ensembles of tilings of squares 

There are tiles that cannot be subdivided into squares and rhombi, whose area is of the form (lo), and which 
have a number of nodes that exceeds ( I  1). For example, leuing i denote an edge in the direction e! and i + 4 
denote an edge in the direction -e:!, the tile formed by successiveedges in the directions 013342457706 contains 
five nodes, but has an area of 2As + 5An. TIIU the general octagonal disc-packing pmblem remains unsolved. 
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and I-hexagons to be a maximum for zero phason strain, or will the entropy density be a 
maximum for some finite phason strain? The problems of symmetry posed by this subset 
of the R-ensemble make it important to determine whether the hypothesis that the entropy 
is a maximum at zero phason strain actually holds for the R-ensemble and under what 
circumstances, if any, this hypothesis fails for related systems. 

6. Concluston 

A simple octagonal random-tiling model is presented. A decoration of each vertex with 
an atom leads to a good atomic packing. The tiling model is the octagonal analogue 
of the dodecagonal square-triangle tiling model. It presents, however, several distinctive 
characteristics, such as a non-symmorphic space group, a set of zipper update moves that 
do not always conserve the number of each kind of tile, and a constrained random inflation 
rule. The octagonal tiling model presented is a good model for testing the generality of 
and for extending previous results on quasicrystallie random tilings, disc packings, and 
symmetry. 
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